Universally-Convergent Squared-Operator Iteration Methods for Solitary Waves in General Nonlinear Wave Equations
نویسندگان
چکیده
Three new iteration methods, namely the squared-operator method, the modified squared-operator method, and the power-conserving squared-operator method, for solitary waves in general scalar and vector nonlinear wave equations are proposed. These methods are based on iterating new differential equations whose linearization operators are squares of those for the original equations, together with acceleration techniques. The first two methods keep the propagation constants fixed, while the third method keeps the powers (or other arbitrary functionals) of the solution fixed. It is proved that all these methods are guaranteed to converge to any solitary wave (either ground state or not) as long as the initial condition is sufficiently close to the corresponding exact solution, and the time step in the iteration schemes is below a certain threshold value. Furthermore, these schemes are fast-converging, highly accurate, and easy to implement. If the solitary wave exists only at isolated propagation constant values, the corresponding squared-operator methods are developed as well. These methods are applied to various solitary wave problems of physical interest, such as higher-gap vortex solitons in the two-dimensional nonlinear Schrödinger equations with periodic potentials, and isolated solitons in Ginzburg–Landau equations, and some new types of solitary wave solutions are obtained. It is also demonstrated that the modified squared-operator method delivers the best performance among the methods proposed in this article.
منابع مشابه
Some traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملMulti fluidity and Solitary wave stability in cold quark matter: core of dense astrophysical objects
Considering the magneto-hydrodynamic equations in a non-relativistic multi uid framework, we study the behavior of small amplitude perturbations in cold quark matter. Magneto-hydrodynamic equations, along with a suitable equation of state for the cold quark matter, are expanded using the reductive perturbation method. It is shown that in small amplitude approximation, such a medium should be co...
متن کاملAsymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves
In this paper, we study a class of nonlinear Schrödinger equations (NLS) which admit families of small solitary wave solutions. We consider solutions which are small in the energy space H, and decompose them into solitary wave and dispersive wave components. The goal is to establish the asymptotic stability of the solitary wave and the asymptotic completeness of the dispersive wave. That is, we...
متن کاملSimplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas
The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.
متن کاملISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes
Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...
متن کامل